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Abstract. In this paper, a mathematical programming formulation is presented for the structural
optimization with respect to the shakedown analysis of 3-D perfectly plastic structures on basis of a
finite element discretization. A new direct algorithm using plastic sensitivities is employed in solving
this optimization formulation. The numerical procedure has been applied to carry out the shakedown
analysis of pipe junctions under multi-loading systems. The new approach is compared to so-called
derivative-free direct search methods. The computational effort of the proposed method is much
lower compared to this methods.
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1. Introduction

In many technically meaningful problems of structures (e.g., in the plant manu-
facturing) under variable loads the nonlinear behaviour of the material must be
considered. Inelastic analyses of the plastic (time-independent) or viscous (time-
dependent) behaviour are increasingly used to optimize industrial structures for
safety and for an economic operation. Incremental analyses of the path-dependent
plastic component behaviour are very time-consuming. The shakedown analysis
belongs to the so-called direct or simplified methods which do not achieve the full
details of plastic structural behaviour. The objective of shakedown analysis is the
determination of an operation regime (i.e., safety margin, load carrying capacities)
in which no early failure by plasticity effects has to be expected. Depending on
the magnitude of loading, a structure can show the following structural failure
modes:
e plastic collapse by unrestricted plastic flow at limit load,
e incremental collapse by accumulation of plastic strains over subsequent load
cycles (ratchetting),
e plastic fatigue by alternating plasticity in few load cycles (Low Cycle Fatigue
(LCF)),
e plastic instability of slender compression members (not considered in the
present paper).
Within the Brite-EuRam Project LISA (Staat and Heitzer, 2001) a procedure is de-
veloped using the finite element discretization for direct calculation of the limit and
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shakedown load of structures made of ductile material. The shakedown analysis is
formulated as optimization problem, such that it is easily reformulated for use in
a structural optimization process. Determining optimal values for relevant design
variables characterizing the geometrical shape as well as the material behaviour
requires an efficient strategy to perform sensitivity analyses with respect to the
design variables. Heyman (1958) was the first to study the problem of optimal
shakedown design (see also (Cohn and Parimi, 1973) for an early contribution).
These approaches are restricted to frame structures. Giambanco et al. (1994) exten-
ded this approach to circular plates. The presented approach is suitable to general
3-D structures which can be analyzed by a Finite Element code. In the new ap-
proach the sensitivity analysis is integrated in the formulation of the shakedown
analysis. This permits an integrated treatment of structural and sensitivity analysis
and results into easily applicable and efficient numerical algorithms. For a general
review of sensitivity methods in nonlinear mechanics see Kleiber et al. (1997).
Different types of problems may be considered in structural optimization:
e maximum shakedown load for a given structure (shape).
e optimum shape (e.g. minimum weight) for given shakedown load.

In this contribution we maximize the shakedown range of pipe junctions of variable
thickness of the pipe and the junction. Optimal plastic design of frame structures
has already been realized in some research level software (Nguyen and Morelle,
1990). Recently, optimal plastic design of plates with holes under multi-loading
systems (Schwabe, 2000; Wiechmann et al., 2000) and optimal shakedown design
of frame structures (Spiliopoulos, 1999; Tin-Loi, 2000) have been performed.

2. Concepts of shakedown analysis

Static shakedown theorems are formulated in terms of stress and define safe struc-
tural states leading to an optimization problem for safe load domains. The max-
imum safe load domain is the load domain avoiding plastic failure (with the ex-
ception of plastic buckling). We restrict our presentation to perfectly plastic ma-
terial and no elastic failure modes are considered (i.e., no elastic buckling or high
cycle fatigue). For a formulation of the shakedown analysis for the more realistic
two-surface plasticity material model see, e.g., Heitzer et al. (2000).

2.1. STATIC OR LOWER BOUND SHAKEDOWN ANALYSIS

The shakedown analysis starts from Melan’s lower bound theorem for time vari-
ant loading for perfectly plastic material. Let us suppose that the loads vary in a
convex load domain £, such that every load P(z) = (b(¢z), p(t)) which lays in
£Lo (spanned by NV non-degenerated load vertices P;), is generated with 1, (¢)
by P(t) = w1 Py + ... 4+ uyv Pyv. The equilibrium conditions of the shakedown
analysis and the yield criterion for the actual stresses have to be fulfilled at every
instant of the load history. For the following considerations the von Mises func-
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tion F is preferred. The maximum enlargement of £, is searched for which the
structure is safe. The structure is safe against LCF or against ratchetting if there
is a stress field o (t) such that the equilibrium equations are satisfied and the yield
condition (with yield stress o) is nowhere and at no instant ¢ violated.

max o
s.t. F(o(n) < aj inVv
dive (1) = — aby() inV (1)

o(t)n= apy(t) onaV,

for body forces abg(z), surface loads apg(z). By convexity of £y the constraints
need to be satisfied only in the load vertices P;. This makes the problem time
invariant for any deterministic or stochastic load history.

In the maximum problem (1), the actual stresses o (¢) are splitted into fictitious
elastic stresses o £ (¢) and time independent residual stresses p

o(t) =of(@t)+ p. (2
All residual stresses p generate a linear vector space
B={p|divo=0inV,pn=00n0dV,}. 3

Problem (1) can be transformed into a finite optimization problem by FEM dis-
cretization. For structures with NG Gaussian points in the FEM model one has to
handle O (N G) unknowns and O (N G) constraints. The number of Gaussian points
becomes huge for realistic discretizations of industrial structures and no effective
solution algorithms for discretizations of the nonlinear optimization problem (1)
are available. A method for handling such large-scale optimization problems for
perfect plasticity is called basis reduction technique or subspace iteration (Heitzer,
1999; Heitzer and Staat, 1999; Stein et al., 1993). For a similar formulation of the
shakedown problem for the more realistic two-surface plasticity material model
using the basis reduction see Heitzer et al. (2000).

With the discretization of the structure in N E finite elements with NG Gaussian
points and with the fictitious elastic stresses o £ (j) corresponding to the load vertex
P; the following maximum problem has to be solved:

max o 4)
st. F(ao[(j)+p) <o}
fori=1,..., NG, j=1,... , NV, pe B

with the unknowns o and p,. Instead of searching in the whole vector space 8 for
a solution of this problem, a d-dimensional subspace 8% c 8 is searched for a
lower bound factor o*. Iteratively, different subspaces B% are chosen in the k-th
step of the algorithm for improving the current load factor o*~. The dimensions
of the chosen subspaces are rather small compared to the dimension of 8B, typically
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dim 8%= d < 6. The subspaces B are generated by an equilibrium iteration with
the Finite Element Code PERMAS (Heitzer, 1999; PERMAS, 1988).

This reduction technique generalizes the line search technique, well-known in
optimization theory (Fletcher, 1987). Instead of searching the whole feasible region
for the optimum a sequence of subspaces with a smaller dimension is chosen and
one searches for the best value in these subspaces.

3. Optimization techniques

Hooke and Jeeves coined the phrase direct search in a paper that appeared in 1961
(Hooke and Jeeves, 1961). It describes direct search by the sequential examination
of trial solutions involving comparison of each trial solution with the best obtained
up to that time together with a strategy for determining (as a function of earlier
results) what the next trial solution will be.

To a large extent direct search methods have been replaced by more soph-
isticated techniques. Many of the direct search methods are based on heuristics
which guarantee global convergence behavior analogous to the results known for
globalized quasi-Newton techniques. Direct search methods succeed because many
of them can be shown to rely on techniques of classical analysis like bisection
or golden section search algorithms. For simplicity, we restrict our attention here
to unconstrained maximization of function f : R” — R. We assume that f is
continuously differentiable, but that information about the gradient of f is either
unavailable or unreliable. Because direct search methods neither compute nor ap-
proximate derivatives, they are often described as derivative-free. For a recent
survey on direct search methods and genetic algorithms see Lewis et al. (2000)
and Goldberg (1989), respectively. The genetic algorithms are not considered here
due to their usually high number of function evaluations; nevertheless they are
often useful in structural optimization for elastic material behaviour see, e.g., Woon
et al. (2001). A classification of the most methods for numerical optimization can
be done according to how many terms of the expansion they need (Lewis et al.,
2000), e.g.:

e Newton’'s method (second order)
assumes the availability of first and second derivatives and uses the second-
order Taylor polynomial to construct local quadratic approximations of f.
e Steepest descent (first order)
assumes the availability of first derivatives and uses the first-order Taylor
polynomial to construct local linear approximations of f.
In this classification, zero-order methods do not require derivative information
and do not construct approximations of f, such that they rely only on values of
the objective function. In the following sections the used quasi-Newton methods
and pattern search methods are described. For comparison with the proposed new
method using plastic sensitivities the optimization code PDS2 (1994) written by
Torczon (Lewis et al., 2000) is used.
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3.1. QUASI-NEWTON METHODS

A technique used for iteratively solving unconstrained optimization problems is
the line search method. The method determines the optimal point on a given line
(search direction). A back tracking algorithm is used which starts from an initial
step length and decreases the step length until it is sufficient (Fletcher, 1987).
The algorithm of Dennis/Schnabel is used to omit the exact solution of the one-
dimension optimization on the search line (Dennis and Schnabel, 1983).

The IMSL routines BCONF and BCONG are used for the maximization (IMSL,
1997) if analytic gradients are available or not, respectively. The routines BCONF/
BCONG use a quasi-Newton method and an active set strategy to solve maximiza-
tion problems subject to simple bounds I, u on the variables. The problem is stated
as follows:

max  f(x)
s.t. I<x<u, xeR" 5)

From a given starting point x¢, an active set IA, which contains the indices of the
variables at their bounds, is built. A variable is called a free variable if it is not in
the active set. The routine then computes the search direction for the free variables
according to the formula

d=-B'gf (6)

where B is a positive definite approximation of the Hessian and g is the gradi-
ent evaluated at x¢; both are computed with respect to the free variables. Routine
BCONF calculates the gradient by a finite-difference method evaluated at x°. The
search direction for the variables in 1A is set to zero. A line search is used to find a
new point x*,

X"=x+ad, 1€ (0,1] )
such that

XM < fX) +ag’d,a € (0,0.5) (8)
Finally, the optimality conditions

NI < €6 < x; < u; 9

g(X) <0,x; =u; (10)

g§(x;) > 0,x =1 (11)

are checked, where € is a gradient tolerance. When optimality is not achieved, B is
updated according to the BFGS formula (e.g., Fletcher, 1987):

B Bss'B  yy”

B<«<B =
- s’Bs  yTs

(12)
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where s=x" — x“and y = g" — g. Another search direction is then computed to
begin the next iteration.

The active set is changed only when a free variable hits its bounds during an
iteration or the optimality condition is met for the free variables but not for all
variables in 1A, the active set. In the latter case, a variable that violates the optim-
ality condition will be dropped out of IA. For more details on the quasi-Newton
method and line search, see Dennis and Schnabel (1983). Since a finite-difference
method is used in routine BCONF to estimate the gradient for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to
terminate at a noncritical point.

3.2. PATTERN SEARCH METHOD

Pattern search methods are characterized by a series of exploratory moves that
consider the behavior of the objective function at a pattern of points, all of which
lie on a rational lattice. The exploratory moves consist of a systematic strategy
for visiting the points in the lattice in the immediate vicinity of the current iterate
(Lewis et al., 2000). For each move the parameter is varied and it is decided if
there is an improvement, such that the procedure is a direct search. Recently, a
general theory for pattern search (Torczon, 1997) extended a global convergence
analysis (Torczon, 1991) of the multi-directional search algorithm. The used multi-
directional search algorithm proceeds by reflecting a simplex through the centroid
of one of the faces (Lewis et al., 2000).

A simplex is a set of n+1 points in R, e.g. a triangle in R? and a tetrahedron
in R, etc. A non-degenerate simplex is one for which the set of edges adjacent
to any vertex in the simplex forms a basis for the space. If one replaces a vertex
by reflecting it through the centroid of the opposite face, then the result is also a
simplex (see Figure 1). The first single move is that of reflection which identifies
the worst vertex in the simplex (i.e., the one with the least desirable objective value)
and then reflects the worst simplex through the centroid of the opposite face. If the
reflected vertex is still the worst vertex, then next choose the next worst vertex
and repeat the process. The ultimate goals are either to replace the best vertex or
to ascertain that the best vertex is a candidate for a maximizer. Until then, the
algorithm keeps moving the simplex by flipping some vertex (other than the best
vertex) through the centroid of the opposite face. An expansion step allows for a
more progressive move by doubling the length of the step from the centroid to the
reflection point, whereas a contraction steps allow for more conservative moves by
halving the length of the step from the centroid to either the reflection point or the
worst vertex. These steps allow a deformation of the shape of the original simplex.
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Original Reflection Expansion Contraction

va

Figure 1. Simplex with the reflection of one vertex through the centroid of the opposite face.

4, Sensitivity

The line search method needs for solving optimization problems a search direction.
Here the search line is given by the sensitivities of the shakedown analysis, i.e., the
search line is given by the gradients of the shakedown factor with respect to the
design parameters. The following sections describe how to obtain these gradients
directly from the shakedown analysis.

4.1. SENSITIVITY AND MATHEMATICAL PROGRAMMING

A constraint maximization problem P in the most general case is defined as

max  f(X)
s.t. g(X) <0,Vi e d. (13)

Suppose that f,g; : R" — R are twice continuously differentiable and let 4
be some index set. In many applications (e.g., shakedown analysis), the object-
ive function f as well as the constraint functions g; may depend also on other
parameters. Consider the following perturbation P(e) of the original problem P(0)

max f(X, €)
s.t. g(X,e)<0,Vied,ecR? geN (14)

A perturbation & can be interpreted in two ways: as a random error, or as a specific
change in the parameters defining the problem functions. The optimal solution
x*(e) of problem P(e) with the Lagrangian multipliers A* fulfills the following
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first order Karush-Kuhn-Tucker (KKT) conditions:
Agi(X*,e)=0,Vield

AP >0,Vied

V. L(X*,1*,e) =0 (15)
with the Lagrangian function

L(X. A, &)= f(X.€) — Y _Aigi(X,&). (16)

ied

If the system of equations is nonsingular, the implicit function theorem implies,
the existence of a unique differentiable local solution (x*(&), A*(e)) of P(e). For
second order KKT conditions the restricted Lagrangian is defined with only the
active constraints g; = 0, i € 4. The second-order sufficient conditions state that
a point (x*, *) is a strict local maximum of P(e) if (15) is satisfied at (x*, ) and
if the Hessian V2L (x*, A*, &) of the restricted Lagrangian is negative definite on
the tangent space {& | €' V,g;(x*) =0, i € Jo : Af > 0}. Let e = 0, then the
conditions are fulfilled in a local solution x* of P(0). The associated theorem is
given in Fiacco (1976, 1983).

COROLLARY. (Fiacco, 1976): At a local solution x* of problem P(0), assume
that the linear independence condition, the second order sufficiency condition and
the strict complementarity condition 1*g; (x*, ) = 0 are satisfied for all i € £, and
that the functions defining P(e) are twice continuously differentiable with respect
to (x, &) in a neighbourhood of (x*, 0). It follows that at, &g = O

d (x@©0 ) _ -1
de (MO)) =%V (17)
and
d af (x(0), 0) 0gi(x(0), 0)
= FX(0),0) = L N e B8 18
—-/(X(0,0) o 21; e (18)
where
VIL  —=V.g1 -+ —Vi&n
MVign & 0
Qo = : . (19)
)VmVngm 0 8m
and
L [V,LT]
Bea x
Ma= |V,
Vo = 139¢ [ gl] (20)
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All quantities are evaluated at x*(0), A*(0), eq with m = |{|.

4.2. SENSITIVITY IN SHAKEDOWN ANALYSIS

We restrict ourselves to the following perturbation P(¢) of the original shakedown
problem with the unknowns x = («, p1, ... Pyg)

maxX o
s.t. Flaof,(e)+p]—07<0, i=1...,NG, j=1,...,NV. (21)

The problem fulfills the assumptions of the corollary, such that we obtain the de-
rivatives at the solution «* of the original problem P(0) with the original fictitious
elastic stresses o £ (0) by:

dO{>k _ Z )L*agz(x(o)vo)

de 0e

d
d_f (0,0 =
€ ,
i active ee0

~ ., 0 3o} ()
= w2 Hggrlresie Tl =

i active =0

(22)

This problem is solved by the described basis reduction method in a recursive
manner by means of Sequential Quadratic Programming (SQP) techniques. The
shakedown factor o, as well as the Lagrange multipliers A} obtained during the op-
timization step k converge to the true solution «* and L* (Heitzer, 1999). Therefore,
in Eq. (22) all values except

daf(e)

5% (23)

€0

are given by the shakedown analysis. This means, that in the case of shakedown
analysis the sensitivity analysis of the plastic structural behaviour is reducible to
the sensitivity analysis of the elastic structural response, which is a significant
reduction of computational effort. The sensitivity analysis of the elastic response
is performed by a finite-difference method for a small number of parameters, see
Kleiber et al. (1997) for alternative techniques.

5. Pipejunction subjected to internal pressure and temperature loads

A pipe-junction subjected to internal pressure and temperature loads is analyzed
as a simple example. The shakedown analyses are performed for perfectly plastic
material with a yield stress o, = 250 N/mm?. The inner diameters D = 39 mm
and d = 15mm of the pipe and of the junction are fixed, respectively. The length
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of the pipe and of the junction are L = 81.9mm and / = 17.1 mm fixed, re-
spectively. The variable dimensions are the wall-thickness s and ¢ of the pipe and
the junction, respectively. The meshes of the pipe-junction are generated my an
automatic mesh-generator. The different models are discretized with 125 solid 20-
node hexahedron elements (HEXEC?20). The dimensions of the model are based
on a pipe benchmark problem of PERMAS (PERMAS, 1988). The FE-mesh and
the essential dimensions of the different pipe-junctions are represented in Figure 2.
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Figure 2. FE-mesh and dimensions of the pipe-junction.

The pipe junction is subjected to two-parameter loading, i.e. pressure P and tem-
perature T = T, — T; with T, outer and T; inner temperature vary independentally

0< P < auhy,
0 T;

<
i < aupTo, 0< g, e <1

NN

Py and Ty are a reference pressure and temperature difference, respectively.
The goal of the structural optimization in this example is to maximize the
shakedown factor « for the wall-thickness s and ¢ varying in given bounds:

max o
s.t. O0<s,r <75 (24)

For pure pressure variation the optimal wall thickness of the pipe and of the junc-
tion will tend to infinity because of the decreasing elastic stresses. On the other
hand for pure temperature variation the wall thickness of the pipe and of the junc-
tion will tend to zero. Therefore, different finite positive ratios between the initial
pressure Py and the initial temperature Ty are chosen. The design variables vary
between bounds 0 < s, + < 7.5mm to guarantee that the chosen mesh of the pipe-
junction is not degenerated, otherwise the chosen automatic mesh-generator leads
to meshes with degenerated elements. The shakedown factor «; is the solution
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of the corresponding shakedown optimization problem with the load domain £,
defined by Py and Tp.

Three different mathematical optimization codes using the FEM-based shake-
down analysis are compared for this example. The direct search algorithm PDS2
and the IMSL routines BCONF and BCONG, using finite-difference method and
analytical gradients, respectively. All codes use the same subroutine to calculate the
shakedown load factor «;. The direct search algorithm uses a fixed search pattern.
BCONF performs a finite-difference method to estimate the gradient, such that
for each gradient at least two additional shakedown analyses have to be performed.
BCONG uses the given analytical gradients. The sensitivities are calculated using a
finite-difference method for the elastic stresses and the algorithm described above.

A comparison of the different methods is shown in Table 1. In addition to the op-
timal values s*, t* and the corresponding shakedown load magnitudes P; = o, P,
and T, = a,Tp the number of function calls (i.e., shakedown analyses) are given.
The results for the methods are comparatively close. The values s*, r* decrease for
increasing temperatures as expected. The direct search algorithm is quite sensitive
to the initial starting points, because of its fixed search scheme. Nevertheless with
improved starting values the results for the pattern search method correspond well
with the BCONG routine using the new implemented sensitivities. In all cases the
new method is the fastest method in terms of function calls. It is evident, that the use
of the analytical gradients (BCONG) is preferable to the use of the finite-difference
gradients (BCONF). It has to be noticed that the function f(s,¢) = «y is not
convex, such that probably local maxima exist in the region 0 < s,¢ < 7.5mm.
For instance in load level T/ P° = 100 [K/MPa] the resulting shakedown load
magnitudes P; and T are close, whereas the values s*, ¢* are fairly different. This
may indicate that the global maximum in the region 0 < s,¢ < 7.5mm has not
yet reached. Additional computations suggest, that the temperature difference 7, ~
1400 K is the highest allowable temperature load in the region 0 < s, < 7.5 mm.

6. Conclusion

Shakedown theorems are exact theories of classical plasticity for the direct compu-
tation of safety factors or of the load carrying capacity under varying loads. This
method can be based on static and kinematic theorems for lower and upper bound
analysis. Using Finite Element Methods more realistic modeling can be used for
a more rational design. A mathematical programming formulation is presented for
the structural optimization with respect to the shakedown analysis of 3-D perfectly
plastic structures. A new direct algorithm using plastic sensitivities is employed in
solving this optimization formulation. The numerical procedure has been applied
to carry out the shakedown analysis of pipe junctions under multi-loading sys-
tems. The computational effort of the proposed method is much lower compared
to so-called derivative-free direct search methods.
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Table 1. Comparison of the different methods

MICHAEL HEITZER

TiO/PO (K/MPa) Method  s* (mm) ¢*(mm) Py (MPa) T, (K) Function calls
20 Direct 7.3542 4.6692 27.06 541 37
BCONF  7.5000 6.3031  29.15 583 64
BCONG  7.5000 4.4011 26.35 527 7
40 Direct 7.4665 6.8200 19.90 796 17
BCONF  5.5654 3.7504 18.08 720 52
BCONG  7.5000 6.3041 19.75 790 12
60 Direct 7.3994 4.8968 15.51 931 18
BCONF  6.7809 4.5379 15.37 922 45
BCONG 4.7345 7.5000 14.62 877 13
80 Direct 6.9828 6.6913 13.52 1082 50
BCONF  4.1465 5.7304 11.65 932 45
BCONG 7.1101 4.9480 13.15 1052 4
100 Direct 5.1344 4.0902 10.07 1007 22
BCONF  4.5733 3.4209 10.71 1072 41
BCONG 4.1404 4.2517 10.10 1011 9
120 Direct 6.9835 6.6906 10.35 1242 7
BCONF  7.5000 4.4788 9.13 1096 27
BCONG  7.5000 6.7115 10.57 1268 6
140 Direct 5.8310 43171 8.13 1138 17
BCONF  5.6060 3.4642 7.73 1082 44
BCONG 4.4660 4.3343 8.51 1191 4
160 Direct 5.2488 4.6217 7.21 1154 41
BCONF  4.9742 4.0640 7.81 1249 75
BCONG  3.8007 2.9375 6.96 1114 12
180 Direct 6.1470 6.9148 7.31 1326 14
BCONF  4.4983 4.5002 6.28 1130 21
BCONG 5.4341 3.7255 6.69 1205 7
200 Direct 6.0650 5.7721 6.60 1320 15
BCONF  4.4038 3.9833 6.43 1286 68
BCONG 3.9576 3.5771 6.03 1207 5
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